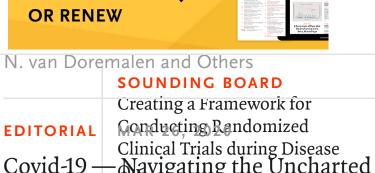

SUBSCRIBE



78

PERSPECTIVE Critical Supply Shortages — The Need for Ventilators and Personal Protective Equ...

Most Viewed

SUBSCRIBE

Sign In

Covid-19 — Navigating the Uncharted

Create Account

CORRESPONDENCE

ORIGINAL ARTICLE MAR 5, 2020 Aerosol and Surface Stability of SARS-CoV-2 as Continuated with SARS-Savirus in the United States CoV-1

TO THE EDITOR:

A novel human coronavirus that is now named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) (formerly called HCoV-19) emerged in Wuhan, China, in late 2019 and is now causing a pandemic. We analyzed the aerosol and surface stability of SARS-CoV-2 and compared it with SARS-CoV-1, the most closely related human coronavirus.²

We evaluated the stability of SARS-CoV-2 and SARS-CoV-1 in aerosols and on various surfaces and estimated their decay rates using a Bayesian regression model (see the Methods section in the Supplementary Appendix, available with the full text of this letter at NEJM.org). SARS-CoV-2 nCoV-WA1-2020 (MN985325.1) and SARS-CoV-1 Tor2 (AY274119.3) were the strains used. Aerosols (<5 μm) containing SARS-CoV-2 (10^{5.25} 50% tissue-culture infectious dose [TCID₅₀] per milliliter) or SARS-CoV-1 $(10^{6.75-7.00} \text{ TCID}_{50} \text{ per milliliter})$ were generated with the use of a three-jet Collison nebulizer and fed into a Goldberg drum to create an aerosolized environment. The inoculum resulted in cycle-threshold values between 20 and 22, similar to those observed in samples obtained from the upper and lower respiratory tract in humans.

and SARS-CoV-1) in five environmental conditions (aerosols, plastic, stainless steel, copper, and cardboard). All experimental measurements are reported as means across three replicates.

Figure 1.

Viability of SARS-CoV-1 and SARS-CoV-

2 in Aerosols and on Various Surfaces.

Our data consisted of 10 experimental conditions involving two viruses (SARS-CoV-2

throughout the duration of our experiment (3 hours), with a reduction in infectious titer from $10^{3.5}$ to $10^{2.7}$ TCID₅₀ per liter of air. This reduction was similar to that observed with SARS-CoV-1, from $10^{4.3}$ to $10^{3.5}$ TCID₅₀ per milliliter (Figure 1A).

SARS-CoV-2 remained viable in aerosols

SARS-CoV-2 was more stable on plastic and stainless steel than on copper and cardboard, and viable virus was detected up to 72 hours

measured after 8 hours (Figure 1A).

after application to these surfaces (Figure 1A), although the virus titer was greatly reduced (from $10^{3.7}$ to $10^{0.6}$ TCID₅₀ per milliliter of medium after 72 hours on plastic and from $10^{3.7}$ to $10^{0.6}$ TCID₅₀ per milliliter after 48 hours on stainless steel). The stability kinetics of SARS-CoV-1 were similar (from $10^{3.4}$ to $10^{0.7}$ TCID₅₀ per milliliter after 72 hours on plastic and from $10^{3.6}$ to $10^{0.6}$ TCID₅₀ per milliliter after 48 hours on stainless steel). On copper, no viable SARS-CoV-2 was measured after 4 hours and no viable SARS-CoV-1 was measured after 8 hours. On cardboard, no viable SARS-CoV-2 was measured after 24 hours and no viable SARS-CoV-1 was

milliliter of medium over time (Figure 1B). The half-lives of SARS-CoV-2 and SARS-CoV-1 were similar in aerosols, with median estimates of approximately 1.1 to 1.2 hours and 95% credible intervals of 0.64 to 2.64 for SARS-CoV-2 and 0.78 to 2.43 for SARS-CoV-1 (Figure 1C, and Table S1 in the Supplementary Appendix). The half-lives of the two viruses were also similar on copper. On cardboard, the half-life of SARS-CoV-2 was longer than that of SARS-CoV-1. The longest viability of both viruses was on stainless steel and plastic; the estimated median half-life of SARS-CoV-2 was approximately 5.6 hours on stainless steel and 6.8 hours on plastic (Figure 1C). Estimated differences in the half-lives of the two viruses were small except for those on cardboard (Figure 1C). Individual replicate data were noticeably "noisier" (i.e., there was more variation in the experiment, resulting in a larger standard error) for cardboard than for other surfaces (Fig. S1 through S5), so we advise caution in interpreting this result. We found that the stability of SARS-CoV-2 was similar to that of SARS-CoV-1 under

Both viruses had an exponential decay in virus titer across all experimental

conditions, as indicated by a linear decrease in the log₁₀TCID₅₀ per liter of air or

epidemiologic characteristics of these viruses probably arise from other factors, including high viral loads in the upper respiratory tract and the potential for persons infected with SARS-CoV-2 to shed and transmit the virus while asymptomatic.^{3,4} Our results indicate that aerosol and fomite transmission of SARS-CoV-2 is plausible, since the virus can remain viable and infectious in aerosols for hours and on surfaces up to days (depending on the inoculum shed). These findings echo those with SARS-CoV-1, in which these forms of transmission were associated with nosocomial spread and super-spreading events,⁵ and they provide information for pandemic mitigation efforts. Neeltje van Doremalen, Ph.D.

the experimental circumstances tested. This indicates that differences in the

National Institute of Allergy and Infectious Diseases, Hamilton, MT

Trenton Bushmaker, B.Sc.

Dylan H. Morris, M.Phil.

Princeton University, Princeton, NJ Myndi G. Holbrook, B.Sc.

National Institute of Allergy and Infectious Diseases, Hamilton, MT Amandine Gamble, Ph.D.

Brandi N. Williamson, M.P.H. National Institute of Allergy and Infectious Diseases, Hamilton, MT

University of California, Los Angeles, Los Angeles, CA

Azaibi Tamin, Ph.D. Jennifer L. Harcourt, Ph.D. Natalie J. Thornburg, Ph.D.

Susan I. Gerber, M.D. Centers for Disease Control and Prevention, Atlanta, GA

University of California, Los Angeles, Los Angeles, CA, Bethesda, MD Emmie de Wit, Ph.D.

James O. Lloyd-Smith, Ph.D.

Vincent J. Munster, Ph.D.

National Institute of Allergy and Infectious Diseases, Hamilton, MT vincent.munster@nih.gov

and Gamble), from the National Science Foundation (DEB-1557022, to Dr. Lloyd-Smith), and from the Strategic Environmental Research and Development Program of the Department of Defense (SERDP, RC-2635, to Dr. Lloyd-Smith). Disclosure forms provided by the authors are available with the full text of this letter at NEJM.org.

Advanced Research Projects Agency (DARPA PREEMPT No. D18AC00031, to Drs. Lloyd-Smith

Supported by the Intramural Research Program of the National Institute of Allergy and

Infectious Diseases, National Institutes of Health, and by contracts from the Defense

necessarily represent the official position of the Centers for Disease Control and Prevention (CDC). Names of specific vendors, manufacturers, or products are included for public health and informational purposes; inclusion does not imply

The findings and conclusions in this letter are those of the authors and do not

endorsement of the vendors, manufacturers, or products by the CDC or the Department of Health and Human Services. This letter was published on March 17, 2020, at NEJM.org. Dr. van Doremalen, Mr. Bushmaker, and Mr. Morris contributed equally to this letter.

Supplementary Material

Supplementary Appendix Disclosure Forms

5 References

More about INFECTIOUS DISEASE VIRAL INFECTIONS GLOBAL HEALTH

PDF

PDF

1515KB

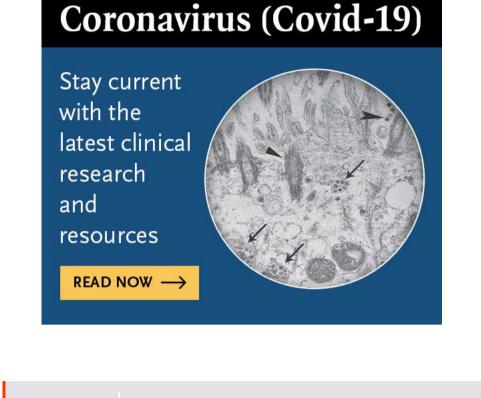
277KB

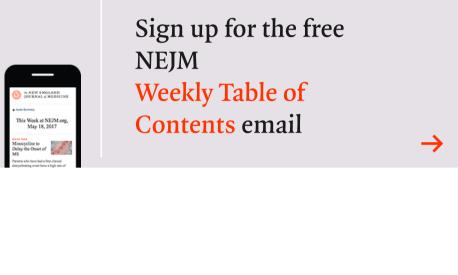
More from the week of April 2, 2020 **EDITORIAL** CLINICAL PROBLEM-SOLVING

M. L. Holshue and Others

March 17, 2020 DOI: 10.1056/NEJMc2004973 Metrics

CareerCenter


(NEJM


Neurology

Physician

PHYSICIAN JOBS APRIL 2, 2020 Cardiology New York City, New York Pediatric Cardiac Advanced Imager - Cohen Children's Medical Center - NYC Suburbs **Hematology / Oncology** Longview, Texas Hematologist/Oncologist - Texas Oncology Longview **Family Medicine** East Hanover, New Jersey FAMILY MEDICINE PHYSICIAN **Family Medicine** Texas TX Family Medicine Opportunity Hematology / Oncology Flagstaff, Arizona Hematologist/Oncologist - Arizona Oncology Flagstaff

Denver, Colorado

Missing the Target C. Iriarte and Others

SUBSCRIBE →

Browse all Articles

Current Issue

Issue Index

Agents

Reprints

Permissions

NEJM CareerCenter

L. Laine

Timing of Endoscopy in Patients Hospitalized

with Upper Gastrointestinal Bleeding

IMAGES IN CLINICAL MEDICINE

S.F. Assimakopoulos and M. Marangos

Orbital Hydatid Cyst

Tap into groundbreaking The NEW ENGLAND JOURNAL of MEDICINE research and clinically relevant insights Effectiveness of Mass Oral Cholera Vaccination in Beira, Mozambique Already a subscriber? Sign In or Renew

▲ BACK TO TOP ARTICLE CATEGORIES **RESOURCES ABOUT US SUBSCRIPTIONS** STAY CONNECTED **FOLLOW US** About NEJM **Authors & Reviewers** Subscribe **Email Alerts** Research Facebook **Products & Services** Reviews Submit a Manuscript Renew Create Account **Twitter Editors & Publishers** Clinical Cases Subscribers **Activate Subscription** Instagram Apps **Advertising Policies** Perspective **Institutions Create Account NEJM CareerCenter** YouTube **Podcasts** Commentary Media Contact Us Manage Account LinkedIn Other Advertisers Accessibility Pay Bill **RSS Feed**

Special Offers

FAQs

Help

Site Feedback